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1 Summary

Humanoid robots by mechanical construction have the abil-
ity to locomote on various type of terrains. In order to do so,
their planning and control frameworks need to be provided
with reliable and accurate estimates of the robot’s internal
state at every time instant.

In our previous work, we proposed a non-linear Center of
Mass (CoM) estimator [1] which extends the popular Linear
Inverted Pendulum Model (LIPM) based estimators by al-
lowing CoM motion in the vertical axis. Thus, the limiting
assumption that the CoM is constrained to lie on a constant
height horizontal plane is surpassed and accurate estimates
for the full 3-D CoM position and velocity can be obtained.
Nevertheless, in our approach all the fused measurements
were in the world/inertial frame of reference. To this end,
the need of having reliable estimates of the affine transfor-
mations which link the supporting foot and the robot’s body
to the world frame is mandatory.

This work demonstrates a cascade estimation scheme, con-
sisting of two Extended Kalman Filters (EKF), for acquiring
low drift state estimates of important quantities commonly
used in control loops for either humanoid robot balance or
locomotion. First, the humanoid’s body position, orienta-
tion, velocity, support foot position, and orientation with re-
spect to the world frame, are estimated, yielding in such a
way the affine transformations needed by the second part
where the 3-D CoM position and velocity is effectively esti-
mated.

The significance of reliable CoM estimates has been demon-
strated in the DRC finals by Team WPI-CMU [3], where
by utilizing the linear combination of the CoM position and
velocity, termed as Capture Point (CP), they were the only
team successfully detecting and preventing a fall.

2 Methods

The presented state estimation scheme requires sensors that
are commonly available on humanoids nowadays such as
joint encoders, an Inertial Measurement Unint (IMU) on the
chest, Foot Sensitive Resistors (FSRs) on both feet, and an
RGBD camera. Furthermore, the whole scheme, which is
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Figure 1: A cascade state estimation scheme that utilizes two
EKFs, fusing effectively four different sensing sources,
namely RGBD, IMU, joint encoders, and FSRs.

illustrated in Figure 1, is based on generic/simplified dy-
namics, thus it is readily amenable to generalization to other
humanoids.

2.1 Rigid Body Motion Estimation
The non-linear estimator presented in [2], which is based on
Newton-Euler dynamics of a rigid floating mass, is extended
in order to take into account the position and orientation of
the supporting foot. The state vector we estimate is the fol-
lowing:

xt =
[
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]>
(1)

where wrb and wrs are the position of the body and sup-
port foot with respect to the world frame, Rw

b and Rw
s are

the corresponding orientations expressed as rotation matri-
ces, bvb is the body’s velocity, and bω , bα are the gyro and
accelerometer biases, all expressed in the body frame.

The inputs to the filter are the IMU measurements for the
gyro rate bω imu

b and the linear acceleration bα imu
b :

ut =
[

b
ω

imu
b

b
α

imu
b

]>
(2)

Since the foot in contact is stationary but can slightly move



due to possible slippage, it is proper to model the support
foot position and orientation as random walks.

For the update step we fuse the body position and orienta-
tion from a visual SLAM algorithm along with the kinemat-
ically computed support foot’s position and orientation with
respect to the body frame:
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Accordingly, the measurement model is also non-linear.

2.2 Center of Mass Estimation
In this section, we extend our non-linear Zero Moment Point
(ZMP) based state estimator to account for the angular mo-
mentum acting on the body by considering a flying-wheel
around the CoM. Since the dynamics are non-linear we
make use of an EKF with state:

xt = [cx cy cz ċx ċy ċz fx fy fz]
> (4)

where cx, cy, cz and ċx, ċy, ċz are the 3-D position and ve-
locity of the CoM respectively, and fx, fy, fz are the external
forces acting on the CoM.

The input signal is derived from the FSRs and the IMU:
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where zfsr
x , zfsr

y , zfsr
z is the 3-D position of the ZMP, f fsr

N is
the vertical resultant Ground Reaction Force (GRF) as mea-
sured by the FSRs and ω̇ imu

x , ω̇ imu
y is the angular acceleration

in the x and y axes numerically computed from the IMU and
filtered through a low-pass filter.

The measurements fused in the update step are the CoM po-
sition, computed from the kinematics and the CoM acceler-
ation, computed from the IMU’s body acceleration:

yt =
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]>
(6)

All quantities needed by the CoM estimator are transformed
to the world frame, with the affine transformations estimated
by the rigid body estimator.

3 Results

Next, we demonstrate a real-time execution of the presented
estimation scheme with our aldebaran NAO v4.0 robot,
while walking on a milimeter precision paper. To correctly
tune the estimators, we logged IMU raw data for 13 hours
and performed an Alan variance analysis to accurately iden-
tify the noise parameters of the IMU. As it turned out the
IMU is pretty noise, approximately ten times contrasted to
commercially available IMUs. The visual measurements for
the camera position and orientation were delayed about 190-
200ms in the NAO’s CPU clock, while the kinematic mea-
surements were available in every control cycle e.g. 10ms
resulting in faster filter updates.
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Figure 2: 3-D CoM trajectory, the blue lines indicate the es-
timated trajectories while the black lines indicate the
kinematically computed ones.

In Figure 2, the estimated 3-D CoM trajectory is shown, con-
trasted to the kinematically computed one. As illustrated in
the video (https://goo.gl/eOqAUN) and also in the
graph, the robot unavoidable drifts while the feet contact the
ground. This drift has been captured by the estimation pro-
cess, resulting in approximately 4.6cm error in the x-axis,
3cm error in the y-axis and 8.5 degrees error in yaw, which
is more than satisfactory when taking into account the inac-
curate and noisy sensors the NAO robot is equipped with.

4 Conclusion

In this work, we presented a cascade non-linear state esti-
mation scheme which effectively utilizes the joint encoders,
the IMU, the FSRs, and an RGBD camera to provide with
reliable state estimates for the 3-D body position, velocity
and orientation along with the 3-D CoM position and veloc-
ity. The aforementioned quantities are commonly used in
various humanoid control frameworks, such as the ZMP/CP
based control schemes, the Hybrid Zero Dynamics frame-
work and in limit cycle walking.
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